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Thermal fluctuations in quantized chaotic systems
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Abstract. We consider a quantum system with degrees of freedom which is classically
chaotic. WhenN is large, and both: "and the quantum energy uncertainy~ are small,
quantum chaos theory can be used to demonstrate the following results: (i) given a generic
observabled, the infinite time averagd of the quantum expectation valga(¢)) is independent

of all aspects of the initial state other than the total energy, and equal to an appropriate thermal
average ofA; (ii) the time variations of A(r)) — A are too small to represent thermal fluctuations;

(iii) however, the time variations afA2(1)) — (A(1))? can be consistently interpreted as thermal
fluctuations, even though these same time variations would be called quantum fluctuations when
N is small.

In this letter we examine the compatibility of certain results in quantum chaos theory
with standard results in statistical mechanics. We consider a bounded, isolated, many-
body quantum system whose classical limit is chaotic. Given an initial gfai®) and a
generic observabld, we ask the following questions. What is the infinite time average
of (A()) = (v ()|A|¥(2))? Is it independent of the initial state (0))? If so, is it equal

to an appropriate thermal average 4? What are the root-mean-square fluctuations, in
time, of (A(¢z)) about its infinite time average? Are these fluctuations correctly predicted
by statistical mechanics?

We begin by noting that the energy spectrum of a bounded quantum system is purely
discrete; if the system is classically chaotic, and also has no discrete symmetries, then the
energy eigenvalueg, are almost always non-degenerate [1]. Since we assume that the
system is isolated, its state at timés

W) =Y Coe ™/ |a) @

where theC,’s specify the initial state, and we assume the usual normalization

Yol ?=1. @)

o

The expectation value of an observaleat timet is
(AM) = (W OIAIY ()
= CiC e EA, ®)
ap

t E-mail address: mark@tpau.physics.ucsb.edu

0305-4470/96/040075+05$19.5@C) 1996 IOP Publishing Ltd L75



L76 Letter to the Editor

where

Aap = (a|AlB) (4)

are the matrix elements of in the energy eigenstate basis. The infinite time average of
(A(r)) is given by

A= lim 1/Tdt (A(D))
0

T—00 T
= " 1Cul?Aga - )
The time-averaged fluctuations oA (¢)) aboutA are given by

o —2_ . 1T — 2
[(A®) —A] = lim 7/ dr [(A(1)) — A]
=00 T Jo
= Y ICuPICsI* |Aupl®. (6)
o, fFa
We now turn to a discussion of what can be inferred about (5) and (6) from quantum chaos
theory.

Quantum chaos theory is largely based on semiclassical arguments; to make use of it,
we will have to assume that Planck constant is ‘small.” This means that there is some
dimensionless combination of parameters, with a single power of Planck’s constant in the
numerator, which serves as an expansion parameter for quantities sdgh aehe relevant
combination of parameters, which we will cal] obviously depends on the system under
consideration. How small has to be depends on bothand the range of energies which
are of interest. It is particularly difficult to determine the dependendeaf N, the number
of degrees of freedom in the system. This question is irrelevant whisrsmall, but crucial
when N is large. We will not discuss this important problem any further here, however; we
will simply assume that the correct expansion paramietevhatever its dependence of
is sufficiently small.

Given a classically chaotic system withdegrees of freedom, we consider an observable
A which is a smooth function of the classical coordinates and momenta, and which has no
explicit dependence oh.” Then quantum chaos theory predicts that the matrix elements
Aqp are given by

Agp = A(Eo)8ap + RN V2R, @)

Here A(E) is a smooth function of energy whose leading term in khexpansion is
O®). The matrix elementR,; are also0®°) to leading order, and their values are
characterized by a smooth distribution, often assumed to be Gaussian. Equation (7) has not
been demonstrated rigorously, but it follows from a variety of different arguments, including
Berry’s random-wave conjecture for the energy eigenfunctions [2—4], the analogy between
guantized chaotic systems and random matrix theory [5], and the semiclassical periodic orbit
expansion, assuming a certain randomness for the periodic orbits [6]. There is, however,
one aspect of (7) which has been proven rigorously; specifically

im A.. — JSd¥p d¥q 8(H(p,q) — E)A(p, 9) ®)

@00 JdVp dVg 8(H(p,q) — Ea)
whereH (p, g) is the classical Hamiltonian, artl(p, ¢) is the classical form of the operator
A [7]. The limit holds for all energy eigenstatge except possibly a subsequence of density
zero. The right-hand side of (8) is tt@%°) contribution to A(E,).
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For later use, we must also examine the matrix elementd?f Consider first the
diagonal elementgA?),, = Zﬁ AupAgy; Using equation (7) gives

(A)gq = [A2<Ea> +RV Y R ﬂ + RN 22 A(Eq) Roo ©)
B

We have grouped the terms as shown because the second term in square brackets is actually
0%, despite the explicit factor df¥—1. This is because the sum ovércan be converted
to an integral over the quantum density of states, and the quantum density of states is
O® ") [1]. One more factor of: then arises from converting a quantum energy integral
into a classical frequency integral [3]. Thus, the diagonal matrix elements dfave the
same general structure (7) as the diagonal matrix elememns tfis is of course required
for internal consistency, since there was nothing special alhout
Now consider the off-diagonal elemermz)ay = ZB AqpAg,; using equation (7) gives

(A%)gy = RN D[ A(Ey) + A(E))]Ray + ¥ RupRyp, (10)
B

whena # y. This time, however, the sum overin the last term does not contribute a
factor of A~V *1, becauseR,s Rz, is not positive definite. Instead, we expeRis Rs, to
have a phase (or perhaps just a sign) which varies erratically #vitihis implies that
the sum over8 of R.,sR;, is the same order in as the square root of the sum over
of |RusRs,|% this latter sum isO(R V). Thus we conclude that, overall, the second
term on the right-hand side of (10) @7 ~Y/2), just like the first term, and just like the
off-diagonal matrix elements od. Again this is required for the consistency of (7) with
the generic character of.

Returning to equation (5), if we insert (7) we get

A=Y "|CuPA(ES) + OGN /%) (11)
We now assume thoz;t the expected value of the total energy

(E) =Y |Cal®Eq (12)
has a quantum unce:tainty

AE = [Z |Cal? (Eq — <E>>2]l/2 (13)

which is small, in a sense which we will make more precise shortly. This is a natural
assumption ifN is large, since states of physical interest typically haue ~ N~Y?(E).
Note, however, that in this case the smallnesa af does not imply or require the smallness
of 7.

AssumingAE is small, we can expand(E,) about(E) to get

A(E,) = A(E)) + (Eq — (E)A'((E)) + 3(Eq — (E)?A'(E)+ -+ . (14)
Substituting this expansion in (11), we find
A= A(E)) + 3(AEYA"((E) + O((AE)®) + ORN V7). (15)

Thus, the infinite time averagé depends on the expected value of the total engrgy

but is independent of all other aspects of the initial state, provideditimsmall enough
to make theo®@¥ ~Y/2) term negligible, and provided that

A"((E))
A(E))

(AE)? (16)
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This is the more precise criterion for the smallness\df.

We are now able to make a connection with statistical mechanics. Mathematically,
we can choose thgl,|? to represent a microcanonical average over an energy raige
centred on(E). If this AE is chosen to satisfy (16), thef is equal to this microcanonical
average ofA. Alternatively, we can choose tH€,|? to be canonical Boltzmann weights;
the canonical energy dispersianE is usually smaller tharE) by a factor of N~1/2, and
therefore the canonicak E should satisfy (16) whew is large. If so, thend is equal to
the canonical thermal average #fat whatever temperature results in a total energyFof
Thus, the functiond(E) can in principle be calculated, at least up to corrections which are
ORN=Y/2) and O(N 1), by the methods of canonical statistical mechanics.

Some time ago, Jaynes [8] pointed out that a canonical calculation of the size of the
thermal fluctuations in some observablemust ultimately be based on demonstrating that
A exhibits time variations with the same root-mean-square amplitude. To study this issue
in the present context, we first consider the time variationg4af)) — A. From (6), (7),
and (2), we find

[(A@) — AT = o). (17)
We see that the fluctuations ¢A(¢)) aboutA are small. This tells us that, whatever the
initial value (A(0)) happens to be(A(r)) must eventually approach its thermal average
and then remain neat most of the time. (We do not, however, learn anything about the
time scale of this approach.) Apparently, under appropriate circumstances quantum chaos
can serve as the dynamical underpinning of certain basic results of statistical mechanics, an
idea which has already appeared in various guises [4, 9].

On the other hand, equation (17) is too small to represent the expected thermal
fluctuations of A, which areO®°). To find thermal fluctuations, we must look at the
infinite time average ofA2(¢)); this is given by

A2 = lim }/ dr (A%(1))
0

T—>00 T

D ICal? (A% e - (18)

We have already seen that the matrix elementsidhave the same general structure as
the matrix elements ofi. Therefore, we can immediately conclude thgtis equal to a
thermal average of?, up to corrections which ar@@™”~2/2) andO(N 7).

Putting everything together, we conclude that, up to corrections whiclo@ré —1/2)
andO(N 1), the infinite time average afA?(r)) — (A(r))? is equal to a thermal average of
(A—A)2. Thus, variations with time ofA?(r)) — (A(7))? can be interpreted as representing
thermal fluctuations. It is interesting to note that, in a few-body system, these same time
variations would be called quantum fluctuations.

In summary, results from quantum chaos theory are compatible with results from
statistical mechanics; quantum chaos theory can even be used as a basis from which one
can demonstrate, for example, that the quantum expectation value of an observable must
approach its thermal average, at least when the number of degrees of fraedoiarge,
the quantum energy uncertainyE is small, and the semiclassical expansion paranteier
small. Just how smal needs to be is a question to which we hope to return. Also, we have
seen that the variations with time of a quantum expectation value are too small to account
for the expected thermal fluctuations; instead, what would be called quantum fluctuations
when N is small have just the right amplitude to be identified as thermal fluctuations when
N is large.
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