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LETTER TO THE EDITOR

Thermal fluctuations in quantized chaotic systems

Mark Srednicki†
Department of Physics, University of California, Santa Barbara, CA 93106, USA

Received 20 November 1995

Abstract. We consider a quantum system withN degrees of freedom which is classically
chaotic. WhenN is large, and both ¯h and the quantum energy uncertainty1E are small,
quantum chaos theory can be used to demonstrate the following results: (i) given a generic
observableA, the infinite time averageA of the quantum expectation value〈A(t)〉 is independent
of all aspects of the initial state other than the total energy, and equal to an appropriate thermal
average ofA; (ii) the time variations of〈A(t)〉−A are too small to represent thermal fluctuations;
(iii) however, the time variations of〈A2(t)〉− 〈A(t)〉2 can be consistently interpreted as thermal
fluctuations, even though these same time variations would be called quantum fluctuations when
N is small.

In this letter we examine the compatibility of certain results in quantum chaos theory
with standard results in statistical mechanics. We consider a bounded, isolated, many-
body quantum system whose classical limit is chaotic. Given an initial state|ψ(0)〉 and a
generic observableA, we ask the following questions. What is the infinite time average
of 〈A(t)〉 ≡ 〈ψ(t)|A|ψ(t)〉? Is it independent of the initial state|ψ(0)〉? If so, is it equal
to an appropriate thermal average ofA? What are the root-mean-square fluctuations, in
time, of 〈A(t)〉 about its infinite time average? Are these fluctuations correctly predicted
by statistical mechanics?

We begin by noting that the energy spectrum of a bounded quantum system is purely
discrete; if the system is classically chaotic, and also has no discrete symmetries, then the
energy eigenvaluesEα are almost always non-degenerate [1]. Since we assume that the
system is isolated, its state at timet is

|ψ(t)〉 =
∑
α

Cα e−iEαt/h̄ |α〉 (1)

where theCα ’s specify the initial state, and we assume the usual normalization∑
α

|Cα|2 = 1 . (2)

The expectation value of an observableA at time t is

〈A(t)〉 ≡ 〈ψ(t)|A|ψ(t)〉
=

∑
αβ

C∗
αCβ ei(Eα−Eβ)t/h̄Aαβ (3)
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where

Aαβ ≡ 〈α|A|β〉 (4)

are the matrix elements ofA in the energy eigenstate basis. The infinite time average of
〈A(t)〉 is given by

A ≡ lim
τ→∞

1

τ

∫ τ

0
dt 〈A(t)〉

=
∑
α

|Cα|2Aαα . (5)

The time-averaged fluctuations of〈A(t)〉 aboutA are given by[〈A(t)〉 − A
]2 ≡ lim

τ→∞
1

τ

∫ τ

0
dt

[〈A(t)〉 − A
]2

=
∑
α,β 6=α

|Cα|2 |Cβ |2 |Aαβ |2 . (6)

We now turn to a discussion of what can be inferred about (5) and (6) from quantum chaos
theory.

Quantum chaos theory is largely based on semiclassical arguments; to make use of it,
we will have to assume that Planck constant is ‘small.’ This means that there is some
dimensionless combination of parameters, with a single power of Planck’s constant in the
numerator, which serves as an expansion parameter for quantities such asAαβ . The relevant
combination of parameters, which we will call ¯h, obviously depends on the system under
consideration. How small ¯h has to be depends on bothA and the range of energies which
are of interest. It is particularly difficult to determine the dependence of ¯h onN , the number
of degrees of freedom in the system. This question is irrelevant whenN is small, but crucial
whenN is large. We will not discuss this important problem any further here, however; we
will simply assume that the correct expansion parameter ¯h, whatever its dependence onN ,
is sufficiently small.

Given a classically chaotic system withN degrees of freedom, we consider an observable
A which is a smooth function of the classical coordinates and momenta, and which has no
explicit dependence on ¯h. Then quantum chaos theory predicts that the matrix elements
Aαβ are given by

Aαβ = A(Eα)δαβ + h̄(N−1)/2Rαβ . (7)

Here A(E) is a smooth function of energy whose leading term in the ¯h expansion is
O(h̄0). The matrix elementsRαβ are alsoO(h̄0) to leading order, and their values are
characterized by a smooth distribution, often assumed to be Gaussian. Equation (7) has not
been demonstrated rigorously, but it follows from a variety of different arguments, including
Berry’s random-wave conjecture for the energy eigenfunctions [2–4], the analogy between
quantized chaotic systems and random matrix theory [5], and the semiclassical periodic orbit
expansion, assuming a certain randomness for the periodic orbits [6]. There is, however,
one aspect of (7) which has been proven rigorously; specifically

lim
α→∞Aαα =

∫
dNp dNq δ(H(p, q)− Eα)A(p, q)∫

dNp dNq δ(H(p, q)− Eα)
(8)

whereH(p, q) is the classical Hamiltonian, andA(p, q) is the classical form of the operator
A [7]. The limit holds for all energy eigenstates|α〉 except possibly a subsequence of density
zero. The right-hand side of (8) is theO(h̄0) contribution toA(Eα).
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For later use, we must also examine the matrix elements ofA2. Consider first the
diagonal elements(A2)αα = ∑

β AαβAβα; using equation (7) gives

(A2)αα =
[
A2(Eα)+ h̄N−1

∑
β

|Rαβ |2
]

+ h̄(N−1)/2 2A(Eα)Rαα . (9)

We have grouped the terms as shown because the second term in square brackets is actually
O(h̄0), despite the explicit factor of ¯hN−1. This is because the sum overβ can be converted
to an integral over the quantum density of states, and the quantum density of states is
O(h̄−N) [1]. One more factor of ¯h then arises from converting a quantum energy integral
into a classical frequency integral [3]. Thus, the diagonal matrix elements ofA2 have the
same general structure (7) as the diagonal matrix elements ofA; this is of course required
for internal consistency, since there was nothing special aboutA.

Now consider the off-diagonal elements(A2)αγ = ∑
β AαβAβγ ; using equation (7) gives

(A2)αγ = h̄(N−1)/2[A(Eα)+ A(Eγ )]Rαγ + h̄N−1
∑
β

RαβRβγ (10)

whenα 6= γ . This time, however, the sum overβ in the last term does not contribute a
factor of h̄−N+1, becauseRαβRβγ is not positive definite. Instead, we expectRαβRβγ to
have a phase (or perhaps just a sign) which varies erratically withβ. This implies that
the sum overβ of RαβRβγ is the same order in ¯h as the square root of the sum overβ
of |RαβRβγ |2; this latter sum isO(h̄−N+1). Thus we conclude that, overall, the second
term on the right-hand side of (10) isO(h̄(N−1)/2), just like the first term, and just like the
off-diagonal matrix elements ofA. Again this is required for the consistency of (7) with
the generic character ofA.

Returning to equation (5), if we insert (7) we get

A =
∑
α

|Cα|2A(Eα)+ O(h̄(N−1)/2) . (11)

We now assume that the expected value of the total energy

〈E〉 =
∑
α

|Cα|2Eα (12)

has a quantum uncertainty

1E =
[∑

α

|Cα|2 (Eα − 〈E〉)2
]1/2

(13)

which is small, in a sense which we will make more precise shortly. This is a natural
assumption ifN is large, since states of physical interest typically have1E ∼ N−1/2〈E〉.
Note, however, that in this case the smallness of1E does not imply or require the smallness
of h̄.

Assuming1E is small, we can expandA(Eα) about〈E〉 to get

A(Eα) = A(〈E〉)+ (Eα − 〈E〉)A′(〈E〉)+ 1
2(Eα − 〈E〉)2A′′(〈E〉)+ · · · . (14)

Substituting this expansion in (11), we find

A = A(〈E〉)+ 1
2(1E)

2A′′(〈E〉)+ O((1E)3)+ O(h̄(N−1)/2) . (15)

Thus, the infinite time averageA depends on the expected value of the total energy〈E〉,
but is independent of all other aspects of the initial state, provided that ¯h is small enough
to make theO(h̄(N−1)/2) term negligible, and provided that

(1E)2
∣∣∣∣A′′(〈E〉)
A(〈E〉)

∣∣∣∣ � 1 . (16)
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This is the more precise criterion for the smallness of1E.
We are now able to make a connection with statistical mechanics. Mathematically,

we can choose the|Cα|2 to represent a microcanonical average over an energy range1E

centred on〈E〉. If this 1E is chosen to satisfy (16), thenA is equal to this microcanonical
average ofA. Alternatively, we can choose the|Cα|2 to be canonical Boltzmann weights;
the canonical energy dispersion1E is usually smaller than〈E〉 by a factor ofN−1/2, and
therefore the canonical1E should satisfy (16) whenN is large. If so, thenA is equal to
the canonical thermal average ofA at whatever temperature results in a total energy of〈E〉.
Thus, the functionA(E) can in principle be calculated, at least up to corrections which are
O(h̄(N−1)/2) andO(N−1), by the methods of canonical statistical mechanics.

Some time ago, Jaynes [8] pointed out that a canonical calculation of the size of the
thermal fluctuations in some observableA must ultimately be based on demonstrating that
A exhibits time variations with the same root-mean-square amplitude. To study this issue
in the present context, we first consider the time variations of〈A(t)〉 − A. From (6), (7),
and (2), we find[〈A(t)〉 − A

]2 = O(h̄N−1) . (17)

We see that the fluctuations of〈A(t)〉 aboutA are small. This tells us that, whatever the
initial value 〈A(0)〉 happens to be,〈A(t)〉 must eventually approach its thermal averageA,
and then remain nearA most of the time. (We do not, however, learn anything about the
time scale of this approach.) Apparently, under appropriate circumstances quantum chaos
can serve as the dynamical underpinning of certain basic results of statistical mechanics, an
idea which has already appeared in various guises [4, 9].

On the other hand, equation (17) is too small to represent the expected thermal
fluctuations ofA, which areO(h̄0). To find thermal fluctuations, we must look at the
infinite time average of〈A2(t)〉; this is given by

A2 ≡ lim
τ→∞

1

τ

∫ τ

0
dt 〈A2(t)〉

=
∑
α

|Cα|2 (A2)αα . (18)

We have already seen that the matrix elements ofA2 have the same general structure as
the matrix elements ofA. Therefore, we can immediately conclude thatA2 is equal to a
thermal average ofA2, up to corrections which areO(h̄(N−1)/2) andO(N−1).

Putting everything together, we conclude that, up to corrections which areO(h̄(N−1)/2)

andO(N−1), the infinite time average of〈A2(t)〉 − 〈A(t)〉2 is equal to a thermal average of
(A−A )2. Thus, variations with time of〈A2(t)〉−〈A(t)〉2 can be interpreted as representing
thermal fluctuations. It is interesting to note that, in a few-body system, these same time
variations would be called quantum fluctuations.

In summary, results from quantum chaos theory are compatible with results from
statistical mechanics; quantum chaos theory can even be used as a basis from which one
can demonstrate, for example, that the quantum expectation value of an observable must
approach its thermal average, at least when the number of degrees of freedomN is large,
the quantum energy uncertainty1E is small, and the semiclassical expansion parameter ¯h is
small. Just how small ¯h needs to be is a question to which we hope to return. Also, we have
seen that the variations with time of a quantum expectation value are too small to account
for the expected thermal fluctuations; instead, what would be called quantum fluctuations
whenN is small have just the right amplitude to be identified as thermal fluctuations when
N is large.
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